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Abstract

The ability to rapidly execute a high-fidelity turbine engine simulation is essential in automating
data validation processes during developmental engine testing. Further, execution of a simulation
in real time enables validation of a continuously varying data stream concurrently with the data
acquisition task.

Component-level turbine engine simulations provide high-fidelity steady-state and time-accurate
transient engine performance computations but are not typically applied in a real-time environ-
ment. This paper presents an approach for distributing a component-level simulation task in a par-
allel computing environment in an effort to achieve real-time operation.

A turbine engine simulation was restructured to operate in a parallel computing environment and
tested to quantify the resulting impact on simulation fidelity and execution time. A software accep-
tance test confirmed the viability of the parallel simulation approach and guided the formulation of
refinements. The refinements were incorporated, and the program was reevaluated in terms of
repeatability, speedup, and scalability. The approach, software alpha test results, and direction of
future work are summarized herein.

Introduction

Turbine engine testing at the Arnold Engineering Development Center (AEDC) is conducted to
evaluate engine operation over a wide variety of power conditions and simulated altitude condi-
tions. Thousands of sensors, many producing measurements at rates in excess of one hundred sam-
ples per second, are typically installed in the engine and in the test facility to measure
aerothermodynamic performance. Consequently, a typical 8-hour test can produce three billion
samples of aerothermodynamic performance data. The challenge is to ensure the validity of the
data, monitor the condition of the engine, and promptly identify anomalies.

The countless variations of steady-state and transient engine operation and the necessity to distin-
guish between sensor anomalies and abnormal engine deterioration, combined with the large vol-
ume of data, overwhelm the capabilities of traditional data validation methods. Although
traditional methods produce meaningful results, they are labor-intensive and time-consuming.
Consequently, application of traditional methods is typically restricted to a fraction of the available
data, thus diminishing the ability to detect anomalous data and intermittent events.
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Work and analysis for this research were performed by personnel of Sverdrup Technology, Inc., AEDC Group, technical services
contractor for AEDC. Further reproduction is authorized to satisfy needs of the U. S. Government.



An approach was developed for a fast,
comprehensive, and automated data val-
idation process. The process consists of
several analysis and modeling methods
which together provide a real-time,
model-based data validation tool. The
methods include an event detection sys-
tem, a rule-based expert system with
more than 150 checks, and an engine
model-based fault detection and diag-
nostic system (Fig. 1). The engine
model-based element of the system
relies on a component-level turbine
engine model (CLM) which employs
fundamental physical laws to relate
measurements to each other. The CLM
is an industry-accepted method [1-3] for simulating the aerothermodynamic performance of tur-
bine engines but is not typically used when real-time simulation is required. However, the CLM
provides the level of accuracy and detail required for data validation and fault diagnosis. Other tur-
bine engine modeling methods are available but may compromise accuracy and detail in order to
increase execution speed [4]. Furthermore, the CLM is more easily adapted to the frequent changes
that are expected during engine development.

The CLM must process each data sample at speeds which match or exceed the data-sampling rate
since the CLM is  only one element of an automated process which monitors a data stream whose
measurements vary continuously. Otherwise, a backlog of data samples will grow while waiting
for earlier data samples to be processed. A "real-time" processing rate is defined as a rate that
matches the sampling rate. A requirement also exists for a rate which is faster than the "real-time"
rate. This additional requirement addresses a need to process recorded data in a time span which is
shorter than the duration of the test. For example, a four-hour data tape, off-loaded from a test vehi-
cle, could be processed in less than four hours.

The challenge is to implement a computing strategy that enables the CLM to execute in real time
or faster. Parallel computing was selected as a strategy to provide real-time execution. This strategy
also can be scaled up, allowing extension to offline "faster than real time" applications. A temporal
decomposition of a time-accurate turbine engine CLM is proposed in which the CLM is replicated
on multiple computer processors (CPU) within a high-performance multiple-CPU computer. Each
CPU processes a set of synchronized data samples as other sets are processed on additional CPU's.
Temporal decomposition was selected rather than spatial decomposition, which is often used for
computational fluid dynamic (CFD) applications [5] because previous CLM work suggests that
spatial decomposition of a CLM is ineffective [6,7]. Additionally, temporal decomposition of a
CLM is more easily distributed to an increasing number of CPU's.

The objective of this work is to provide an automated, real-time, model-based test data validation
computer code. The CLM is one element of an approach to permit comprehensive validation of test
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data. Each element, including the CLM, is subject to standard software development practices
including Software Acceptance Testing (SAT), Alpha testing, and Beta testing prior to a produc-
tion release. Each level of software testing imposes more rigorous standards than the previous,
starting with SAT as an entry level assessment of the software and progressing through alpha test-
ing and beta testing.

The subject of this paper is the parallel implementation strategy for the time-accurate CLM.
Results of software alpha testing (α-test) and recommended refinements to the strategy are also
discussed.

Component-Level Model Description

The component-level turbine engine model (CLM) provides a lumped-volume, component-level,
time-accurate simulation applicable to arbitrary engine designs. The CLM is capable of simulating
off-operating-line engine operation and uses widely accepted component-matching principles [1-
3]. An engine control simulation may also be included as an additional program module.

The CLM combines physical relationships that govern engine operation with empirical relation-
ships that describe individual component performance. The result is an adaptable model for which
the effects of changes to engine attributes (e.g., components, configuration, and controls) are incor-
porated by making changes to the corresponding model attributes (i.e., components, configuration,
and controls modules). In addition, the component-matching approach quantifies the effects of
changes to the engine attributes, enabling a prediction capability for the data validation and fault
diagnosis process.

The CLM is an assembly of components constrained to operate in unison to simulate the engine.
An augmented turbofan engine, for example, may include a variable-geometry fan and compres-
sor, combustor, high-pressure and low-pressure turbines, fan bypass duct, mixer, augmentor, and
variable exhaust nozzle (Fig. 2). The component models combine thermodynamic process equa-
tions with empirically determined component performance relationships to simulate component
performance. An iterative technique is used to satisfy the implicit relationships that constrain the
assembly to mass, momentum, and energy conservation principles. Measured engine control vari-
ables are used to govern model operation. The effects of rotor acceleration, heat transfer, and off-
schedule variable geometry are included, providing a simulation of steady-state and transient
engine operation ranging from engine starting conditions to maximum power. The CLM provides
accurate simulation
of operating temper-
atures, pressures,
mass flows, and
rotational speeds for
each of the compo-
nents illustrated in
Fig. 2.

Fig. 2. Augmented Turbofan Engine
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Figure 3 illustrates the high level of agreement
achievable for model calculations as compared to
test measurements for a turbine engine propulsion
system. Typical parameters computed by the model
include compressor speed and combustor pressure.
Agreement briefly exceeds 11 percent but generally
is within 5 percent during an in-flight restart
sequence, in which the engine experiences maxi-
mum power, shutdown, starting, and idle operation.

The primary time-dependent effect for the time-
accurate CLM is the influence of rotor inertia on
engine operation. Heat transfer between the gas
path and the engine hardware is a significant but
secondary effect. The physical effects of rotor iner-
tia and heat transfer on engine operation are depen-
dent on the time-related history of the affected
parameters, and consequently the simulation of these effects is dependent on previously computed
values of the affected parameters. The dependence on previous values of the affected parameters
imposes a serial character on the simulation computations. The serial character of the physical phe-
nomena and their simulation, coupled with the serial character of numerical integration techniques
employed by the CLM, presents a challenge to the parallel computing strategy for the CLM.

CLM Operation in a Test Environment

The CLM, as used in a test environment, is implemented without an engine control simulation
module. Avoiding a requirement for a control simulation module eliminates a potential source of
error in the data validation process and simplifies the CLM. In the absence of a control simulation,
selected test measurements are used as inputs to the CLM to prescribe its forcing functions.

Typically measurements of the controlled variables, such as fuel flow, are used as inputs along with
measurements of the environmental parameters, such as inlet pressure and temperature. Figure 4
illustrates a typical set of pressure, temperature, speed, flow, and variable geometry measurements
used as model inputs.
Rotor acceleration
computed from a time
history of rotor speed
measurements is also
input to the model
together with the speed
measurement.

Time-dependent fluc-
tuations in signals for a
particular measure- Fig. 4. Test Measurements Used as Inputs to CLM
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ment are normal. Although normal, these variations
are detrimental to the numerical stability of the
model since the model is not designed to respond to
rapid (>20 Hz) variations of operating conditions.
Unstable model operation reduces fault detection
and diagnosis effectiveness and leads to lengthy
execution times; therefore, the measurements are
smoothed using a time-averaging technique to min-
imize measurement noise while preserving the
mean value of the measurement. Typical variations
among fan speed measurements are shown in Fig-
ure 5 along with smoothed values used as input to
the model.

Parallel CLM Implementation

The time-decomposition of the time-accurate
CLM enables a replicated worker approach for a
parallel computing implementation of the CLM.
The CLM code is replicated on each CPU of a
parallel high-performance computer (HPC).
Although the results shown herein are from
shared memory HPCs, the parallel implementa-
tion is also achievable on distributed architec-
tures. All of the worker processors are controlled
by a single master processor (Fig. 6). The master
processor transmits a user-determined number
of data samples to each worker, and the worker
processes the samples with its own replication
of the model. The alpha version (a-version) of
the code ensures that each replicated worker
processes a user-selected interval of contiguous
samples in contrast to the previous version [8],
which processed noncontiguous samples (i.e., each successive sample was processed by a different
CPU). The replicated workers receive another interval of samples upon completing each interval;
however, the ensuing interval is not contiguous with the previous interval. A coarse-grain worker,
discussed below, provides the starting time-dependent boundary conditions for each interval.
Additionally, to improve computational efficiency, all data are loaded into memory before process-
ing is initiated. This sequence precludes disc contention bottlenecks.

This approach, in which each worker processes an interval of samples, promotes model conver-
gence, reduces the interprocess communication burden, and introduces a challenge in addressing
time-dependent effects. Model convergence improves because the model is cognizant of the effect
of neighboring samples on the computations. The communication burden is reduced because trans-
mitting many samples with one communication instruction is more effective for the worker than
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transmitting the same samples with an individual instruction for each sample. The challenge for
each worker is to compute the time-dependent effects (e.g., rotor acceleration and heat transfer [8]
between nonadjacent intervals. Thus a coarse-grain worker was designed to address the challenge.

The coarse-grain worker accesses the same
data samples as the replicated workers but
processes only a fraction of them. Also,
the coarse-grain worker processes the sam-
ples contiguously and computes the time-
dependent effects and corresponding
boundary conditions for the replicated
workers (Fig. 7.). The coarse-grain worker
completes its task before the replicated
workers need the time-dependent informa-
tion because the coarse-grain worker pro-
cesses fewer samples. The coarse-grain
worker provides the time-dependent
effects to the replicated workers for the
starting time of each interval, and the
result is fast and accurate computation
from the replicated workers.

However, a balance between the granularity of the coarse worker (i.e., the fraction of samples pro-
cessed) and the scalability of the approach (i.e., the number of replicated workers) is required. As
more replicated workers are added to the configuration, the aggregate rate at which they collec-
tively process the intervals eventually exceeds the rate at which the coarse-grain worker computes
the boundary conditions. Further reduction of the fraction of samples processed by the coarse-
grain worker increases its rate but eventually compromises the fidelity of the calculations. Results
of the α-test indicate that an acceptable balance is achievable for parallel configurations of up to 32
processors. Parallel configurations of larger than 32 processors have not been tested.

The α-implementation also included a feature to operate the CLM code in a batch mode, thus
requiring no interaction from the user. The batch mode enabled extensive automation of software
testing. Job scheduling queues on the HPC platforms automatically processed all of the software
test cases, testing each case with a wide variety of parallel configurations. Operating within the
queuing environment also ensured a stable and consistent environment to conduct repeatable exe-
cution time measurements.

Software Alpha-Testing

Two aspects of α-testing were crucial: repeatability verification on multiple CPU configurations,
and execution speed measurements. Repeatability verification ensures that the results obtained
from a variety of parallel configurations are the same within a tolerance. The execution speed mea-
surements provide an indication of scalability, which is defined as the effectiveness of adding addi-

Fig. 7. Example of Relationship Between Coarse-
Grain Worker, Replicated Worker, and Data
Samples
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tional CPUs to the process either to reduce execution time of the CLM or to process larger
problems.

Repeatability verification, described as the replication of results within a tolerance, was required
for all multiple-CPU configurations. Differences in the results between the serial execution (single
CPU) and multiple-CPU configurations are
attributed primarily to a less accurate start-
ing state for each multiple-CPU interval, a
degeneration that results from the temporal
decomposition. Acceptable tolerances for
the differences were established for individ-
ual parameters and were based on the impor-
tance of the parameter in the fault detection
process, the particular engine maneuver, and
the convergence tolerance within the code.
Typical comparisons between serial execu-
tion, which was considered the baseline, and
multi-CPU configurations are shown in
Figs. 8 through 13. Acceptable tolerances
for α-testing are also contrasted to the higher
SAT tolerances in the figures.

SAT results [8] are repeated (Figs. 8 and 9)
for ease of comparison to α-testing results.
Notable improvements in repeatability are
apparent in Figs. 10 and 11 relative to SAT
results. Figures 8 and 10 show the differ-
ences in turbine exit temperature between the
serial configuration and an 8-CPU configura-
tion for the SAT and α-implementations,
respectively. Turbine exit temperature (T5)
was selected for illustration because rotor
acceleration and heat transfer affect it signifi-
cantly. Similarly, Figs. 8 and 10 show the dif-
ferences in turbine exit pressure between the
serial configuration and an 8-CPU configura-
tion for the SAT and α-implementations,
respectively. Turbine exit pressure (P56) was
selected for illustration because it is sensitive
to model convergence tolerances. Time-
dependent effects (e.g., rotor acceleration and
heat transfer) are included in all cases shown.

The SAT results (Figs. 8 and 9) exhibit a devi-
ation from the baseline during intervals in
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which the time-dependent effects are signifi-
cant– in this case, during engine throttle
excursions (also shown in Figs. 8 through 11).
However, the α-implementation follows the
baseline more exactly during the same inter-
vals (Figs. 10 and 11), resulting in differences
within one percent, thus verifying the
improved repeatability of the α-implementa-
tion.

Execution speed was also measured during α-
testing of the CLM. The same twelve distinct
engine maneuvers used during SAT [8] were
used during α-testing. Measurements were taken for
serial executions of the CLM plus a variety of multiple-
CPU configurations ranging from 4 to 32 CPUs on two
different massively parallel, high-performance com-
puters (SGI Origin 2000 and HP V2500). Representa-
tive results are shown in Figs. 12 and 13. Figure 12
illustrates the speed increase factor relative to the serial
execution time (i.e., speedup) achieved by employing
additional CPUs. Figure 13 illustrates the speed
increase factor relative to the duration of the engine
maneuver as an indication of "real-time" capability.
Variation in speedup among different engine maneu-
vers results from the impact of the maneuver on the
number of iterations required for model convergence
(i.e., severe maneuvers require more iterations). Fig-
ure 12 indicates that the speedup of the α-implementa-
tion exceeds 50 percent of the maximum theoretical
speedup up to the 32-CPU configuration.

Scalability of the α-implementation was also assessed.
Scalability is quantified by the relationship between
problem size, or throughput, and the number of CPUs.
For the CLM code, scalability is the ability to process
more samples within a prescribed length of time by
employing more processors. As an example, to
achieve 100-percent scalability for a problem size that
is two times larger than a selected baseline problem,
the code must achieve the same execution time as the baseline with twice as many processors.
Longer execution times result in reduced scalability.

Scalability is measured in terms of an overall processing rate which is normalized by the number
of CPUs to produce an average processing rate per CPU. Ideally, all parallel configurations will
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achieve the same normalized processing rate with problems that are sized proportionally with the
number of CPUs. Less than ideal performance is realized for a variety of reasons including higher
inter-processor communication activity. The normalized processing rate for a smaller problem is
selected as the baseline to which all other rates are
compared as an indication of scalability.

Figure 14 illustrates a comparison of scalability for a
larger problem with many CPUs in contrast to a
smaller problem with fewer CPUs. The larger problem
is composed of four times more samples than the
smaller but is otherwise equal in complexity. All val-
ues in Fig. 14 are referenced to the baseline case such
that a rate equal to that of the baseline is considered
ideal. High scalability (96 percent) is realized for the
larger problem for 14 worker processors. Although the
scalability diminishes as more CPUs are added, it
remains above an acceptable level (50 percent) with up
to 30 replicated workers.

Future Work

Three aspects of the code were identified as areas of improvement and the target of future work.
The first area focuses on code modularity. Modularity is essential for application of the code in a
variety of situations which include both off-line and on-line (i.e., real-time) operation and interac-
tive use and batch operations. The second area focuses on generalization of the CLM code to
facilitate application of the code to many different turbine engine designs. Finally, as processors
and memory become faster and more expansive, incorporation of more advanced and computa-
tionally intensive models [9,10] becomes feasible.

Summary

Component-level turbine engine simulations provide high-fidelity, time-accurate, engine perfor-
mance computations. An approach for distributing a component-level turbine engine simulation
task in a parallel computing environment was implemented and subjected to software alpha-test-
ing (α-test).

Software α-testing confirmed the viability of the component-level model (CLM) code in terms of
repeatability verification, speedup, and scalability. Results of the a-testing indicate that the CLM
can operate in real time and provide acceptable accuracy to serve as a critical element of a com-
prehensive, automated data validation process.
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